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ABSTRACT

For the usual two-sample problem, let {u}denote the numbers of
observations of say, the second sample falling in between the spacings
formed by the first sample. Asymptotic distribution theory and efficie
cies of tests based on these so called "'spacing-frequencies'' have been
studied in Holst and Rao (1980). In particular they show that among tes
statistics based symmetrically on {y; I , .the statistic corresponding to
the sum of squares of 'pi,' , suggested by Dixon (1940), asymptotically
is locally most powerful. It is also shown there that testsbased on symn
tric functionsof {¥;| are inefficient compared to those that are not sym
metric in these frequencies, These considerations suggest a natural ex
tension of the Dixon statistic, namely ():‘yz +Sw? ) where : } are th
frequencies of the first sample in between the g ps made by the second
sample. This statistic is shown to have better power performance con
pared to Dixon's test by Monte Carlo methods. More complete results
of a theoretical nature will be presented elsewhere.

I, INTRODUCTION

Let X, ---, X \ and Y,, ---, Y be independent random san
ples from two populmtlons with continuods distribution functions (d.f.'s
F(x) and G(y) respectively. The usual two sample problem is to test if
these two populations are identical ie., F=G. Since the spacing-frequ
cies, as well as statistics based on them remain invariant under probal
ity integral transformations, we may without loss of generality make s
a transformation on both samples. This permits us to assume that the
support of both the samples i the interval [0, 1] and the first of these
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d. f.'s namely F(x) is tl}e d.f of uniform distribution on [0,1]. The d.f of
the second sample is G* = G 0 F™! and the null hypothesis is to test if

*
(L1 Ho: G (y)=y, Osysl.
Let 0=X'\< X'< --- <X’ <X' =1 be the order statistice from’ the
0 1 m-1 m
first sample. The sample spacings of X are defined by
(.2) D = Xp - X}ey» k=l ---ym,

and the spacing-frequencies of Y by

(L.3) Vg =number of Y.'s in the interval [X'k._‘ , X'k] k=l, ---m.

Statistics of the symmetric type Th ( 1) and more general ones of the
type Zhy( ¥ ) have been studied in Holst and Rao (1980). It is shown

that the test based on m
h2g) T =% v >

suggested by Dixon (1940) has the maximum asymptotic relative efficiency
(ARE) amongst all the symmetric statistics of the form Zh (y, ), = for
testing the null hypothesis (l.1) against a close sequence of alternatives of
the form

% :

(L. 5) Gply)=y + L(Y)/n', » Osysl,

with & =i- . Itis however an unfortunate fatt that any test symmetric in
V ==, b can not distinguish alternatives of the form (L. 5) when §>},

while several standard two-sample tests, like for instance the Kolmogo-
rov—S;nirnov statistic, do have non-zero power against alternatives (L. 5)
with ¢ =2, ' .

The aim of this note is to present a more powerful but simple alterna-
tive to (1. 4). In order to do this, we introduce the conjugate or dual
spacing frequencics {wJ} defined as follows. Let :

0=Y, < Y'1 < ---<Y' <Yy =1 be the order statistics from the second sampl
Defi?ze the sampl® 'spac'ings of Y as
(L. 6) Ep =Y, - Y, ,» k=1 ---n,
and the dual frequencies
(1.7) wy= pumber of X;'s in the interval [Y) ,, Y, ] k=1, ---n
The proposed statistic for testing H, in (1. 1) is
n

(L. 8) T,=% v2 + w2

) { &y YK

which is a natural extension of the statistic in (1. 4).

II. SOME DISTRIBUTION THEORY AND MONTE CARLO POWER
COMPARISONS

Denoting by R{(,) the rank of tgle observation in the combined sample,
it is easily observed that R(X,) =‘€ka +i, i=l, ~--, m-1 while similarly

R(Yj) =;: w, *+ij, j=1l, ---nllL us it is clear that the vector Y=(y-:{

K

somewhat indirectly determines the dual vector W = (w » -~-w ) and
vice-versa . Indeed the statistic (l.8) can be written as 2
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m
2. 1) z o ova2 o+ T r?2-N_,

k=1 r=0
where Nr = { numberofj:w, =r} . to explore this second ter
further, define the sum of (r-1) of the uk 's starting from the inde:
(2.2) Si(r'” R (PR P N e T
where for convenience, we take yp, = Vi-m for i >m, circularly

R i
{wj 2t } if and only if{Sj(r ) _ 0}, we have
LA SV
1(s; - r) ® 5o

=1 6 - 5j7>0.57)>9)

m
= = 5 ] D ] =0,

i L (h =0 m+yy,+ Ty 27
where I(.) is the indicator function of the event in the parenthesis.
(2.1) and (2. 3), the statistic proposed in (L. 8) can be expressed in |
of {Vk} alone as follows .

m

m m
? 2 V. =0
Tym X W+, T j§| I( 1

Nr

(2.3)

’ S(Jr-‘): 0, Vj+(r-|) > 0)

k=1 : =0, V.
{EaS) mo, . 2R oy, siD=9 Yty > 0)

Kélvx +i= .
Irom this alternate form (2.4) for the proposed statistic T , it is
that it is not symmetric in ( V- - -,liy;) and hence it is possible to |

superior ARE compared to T, (cf. Holst and Rao (1980) ).

A brief outline of the distribution theory follows: Under the nul
hypothesis (1.1), the vector V = (V,. - - Wmy) has the same probabili
distribution as the occupancy numbers in the indistinguishable ball
problem where (m-1) balls are distributed among n cells. Thus

(2.5) P(vzu)al/(m m-Z),
~ ~ m- 1
see for instance the discussion on Bose-Einstein statisticé, Feller

(1968 p, 40), see also Holst (1979), example 2 on p. 552, It may b
easily verified that

2.6  P(y=p) = P(n-u

m -
£ = 0 ),

wh:re 1 = (771. ---y Ny, ) are independent, identically distributed
geometric random variables with pdf p (ﬂi =k)=pqkK , k =0,

h _m-1
where p=——r—, .
14

< in terms of independent geometric random variables is valuable
one can then derive the distribution of any statistic T = f( vy

*
as the conditional distribution of T = f( r]l. - nm) conditioned

This representation (2.6) of the spacing freque

event r}: n; = (n-1). Indeed an application of Theorem 2 Holst (197
1 A

an appropriate central limit theorem yield the asymptotic null dist:
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of T, as given in (2,4). The details are quite messy and will be
ted % elsewhere. :

The superior power performance of T; over T, is shown by the
lowing simulated powers as given in Table 2.1, Instead of using th
asymptotic distributions, we find the upper 5% and 10% values of th
distributions of T} and T, using 200 samples. The values of m
are allowed to be 10, 20, 50, 100 and 200. The powers are then s
ted against the alternative

(2.7) G] =y¥+ osysl

.It appears that as both samples go to infinity at the same rate T
T, appear to have about the same power. Also, whenever m<<n
statistics seem to be equally powerful. However, when m> > n th
symmetric test based on T, has greater power than the symmetric
based on T).

We thank Dr. M. R, Chernick for his help in computations and h
valuable criticism, :
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TABLE 2.1
G
Power
Tl TZ
.055 .11
. 125 . 115
.13 13
.27 .27
. 120 . 135
.190 . 195
. 210 .195
.305 .32
.32 .32
. 135 . 120
. 125 .27
.37 . 325
.025 .1
.075 .295
.095 ,320

31
105
667
2451
21
65
339
1239
4865
15
43

165
13
3l
25

Powe

. 145
. 325
. 215
.33
.20
. 290
.39
.52
. 41
. 135
.175

.49
.15
., 185
. 170



